Leszczynski, M. & Schroeder, C. E. The position of neuronal oscillations in visible energetic sensing. Entrance. Integr. Neurosci. 131–9 (2019).
Google Scholar
Potier S., Lieuvin M., Pfaff M., Kelber A. How briskly can raptors see? J. Exp. Biol. 223https://doi.org/10.1242/jeb.209031 (2020).
Kingston A. C. N., Chappell D. R., Speiser D. I. A snapping shrimp has the quickest imaginative and prescient of any aquatic animal. Biol. Lett. 16https://doi.org/10.1098/rsbl.2020.0298 (2020).
Healy, Okay., McNally, L., Ruxton, G. D., Cooper, N. & Jackson, A. L. Metabolic fee and physique dimension are linked with notion of temporal data. Anim. Behav. 86685–696 (2013).
Google Scholar
Boström, JE et al. Extremely-rapid imaginative and prescient in birds. PLoS One 113–9 (2016).
Google Scholar
Lisney, T. J. et al. Behavioural evaluation of flicker fusion frequency in rooster Gallus gallus domesticus. Vis. Beef. 511324–1332 (2011).
Google Scholar
Hartmann, M. J. Lively sensing capabilities of the rat whisker system. Auton. Robots 11249–254 (2001).
Google Scholar
Humphrey, N. Okay. & Keeble, G. R. Results of purple gentle and loud noise on the speed at which monkeys pattern the sensory atmosphere. Notion 7343–348 (1978).
Google Scholar
Heiligenberg, W. Electrolocation and jamming avoidance in a Hypopygus (Rhamphichthyidae, Gymnotoidei), an electrical fish with pulse-type discharges. J. Comp. Physiol. 91223–240 (1974).
Google Scholar
Nelson, M. E. & MacIver, M. A. Sensory acquisition in energetic sensing techniques. J. Comp. Physiol. A Neuroethol. Sens., Neural, Behav. Physiol. 192573–586 (2006).
Google Scholar
Speakman, J. R., Anderson, M. E. & Racey, P. A. The vitality value of echolocation in pipistrelle bats (Pipistrettus pipistrellus). J. Comp. Physiol. A. 165679–685 (1989).
Google Scholar
Currie, S. E., Boonman, A., Troxell, S., Yovel, Y. & Voigt, C. C. Echolocation at excessive depth imposes metabolic prices on flying bats. Nat. Ecol. Evol. 41174–1177 (2020).
Google Scholar
Holderied, M. W. & Von Helversen, O. Echolocation vary and wingbeat interval match in aerial-hawking bats. Proc. R. Soc. B Biol. Sci. 2702293–2299 (2003).
Google Scholar
Surlykkc, A. et al. Echolocation in two very small bats from Thailand: Craseonycteris thonglongy and Myotis siligorensis. Behav. Ecol. Sociobiol. 331–12 (1993).
Google Scholar
Lima, S. L. & Patrick, A. Z. In the direction of a behavioral ecology of ecological landscapes. Developments Ecol. Evol. 11131–135 (1996).
Google Scholar
Stilz, W.-P. & Schnitzler, H.-U. Estimation of the acoustic vary of bat echolocation for prolonged targets. J. Acoust. Soc. Am. 1321765–1775 (2012).
Google Scholar
Kalko, E. Okay. V. & Schnitzler, H. Plasticity in Echolocation Alerts of European Pipistrelle Bats in Search Flight: Implications for Habitat Use and Prey Detection. Behav. Ecol. Sociobiol. 33415–428 (1993).
Google Scholar
Jensen, M. E. & Miller, L. A. Echolocation indicators of the bat Eptesicus serotinus recorded utilizing a vertical microphone array: impact of flight altitude on looking out indicators. Behav. Ecol. Sociobiol. 4760–69 (1999).
Google Scholar
Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing diversifications, flight efficiency, foraging technique and echolocation. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 316335–427 (1987).
Google Scholar
Levin, E., Yom-Tov, Y. & Barnea, A. Frequent summer season nuptial flights of ants present a major meals supply for bats. pure sciences 96477–483 (2009).
Google Scholar
Arlettaz, R. Feeding behaviour and foraging technique of free-living mouse-eared bats, Myotis myotis and Myotis blythii. Anim. Behav. 511–11 (1996).
Google Scholar
Otálora-Ardila , A. , Herrera , LG , Juan Flores-Martinez , J. & Voigt , CC Marine and terrestrial meals sources within the weight loss program of the fish-eating myotis (Myotis vivesi). J. Mammal. 941102–1110 (2013).
Google Scholar
Goldshtein, A. et al. Reinforcement studying permits useful resource partitioning in foraging bats. Curr. Biol. 304096–4102 (2020).
Google Scholar
Medellin, R. A. et al. Observe me: foraging distances of Leptonycteris yerbabuenae (Chiroptera: Phyllostomidae) in Sonora decided by fluorescent powder. J. Mammal. 99306–311 (2018).
Google Scholar
Chiu, C., Xian, W. & Moss, C. F. Flying in silence: Echolocating bats stop vocalizing to keep away from sonar jamming. Proc. Natl Acad. Know USA 10513116–13121 (2008).
Google Scholar
Taub M., Yovel Y. Adaptive studying and recall of motor sensory sequences in grownup echolocating bats. BMC Biol. 19https://doi.org/10.1186/s12915-021-01099-w (2021).
Amichai, E. & Yovel, Y. Bats pre-adapt sensory acquisition in keeping with goal distance previous to takeoff even within the presence of nearer background objects. Sci. Rep. 71–9 (2017).
Google Scholar
Amichai E., Blumrosen G., Yovel Y. Calling louder and longer: How bats use biosonar underneath extreme acoustic interference from different bats. Proc. R Soc. B Biol. Sci. 282https://doi.org/10.1098/rspb.2015.2064 (2015).
Jones, G. Scaling of wingbeat and echolocation pulse emission charges in bats: why are aerial insectivorous bats so small? Funct. Ecol. 8450–457 (1994).
Google Scholar
Norberg, U. M. L. & Åke Norberg, R. Scaling of wingbeat frequency with physique mass in bats and limits to most bat dimension. J. Exp. Biol. 215711–722 (2012).
Google Scholar
Egert-Berg, Okay. et al. Useful resource ephemerality drives social foraging in bats. Curr. Biol. 283667–3673.e5 (2018).
Google Scholar
Schnitzler, H.-U. & Kalko, E. Okay. V. Echolocation by insect-eating bats. Bioscience 51557 (2001).
Google Scholar
Surlykke, A. & Moss, C. F. Echolocation conduct of huge brown bats, Eptesicus fuscus, within the discipline and the laboratory. J. Acoust. Soc. Am. 1082419–2429 (2000).
Google Scholar
Cvikel, N. et al. Bats mixture to enhance prey search however could be impaired when their density turns into too excessive. Curr. Biol. 25206–211 (2015).
Google Scholar
Kalko, E. Okay. V. Insect pursuit, prey seize and echolocation in pipestirelle bats (Microchiroptera). Anim. Behav. 50861–880 (1995).
Google Scholar
Schnitzler , HU , Kalko , E. , Miller , L. & Surlykke , A. The echolocation and searching conduct of the bat, Pipistrellus kuhli . J. Comp. Physiol. A. 161267–274 (1987).
Google Scholar
Boonman, A., Bar-On, Y., Cvikel, N. & Yovel, Y. It’s not black or white-on the vary of imaginative and prescient and echolocation in echolocating bats. Entrance. Physiol. 41–12 (2013).
Google Scholar
Houston, R. D., Boonman, A. M. & Jones, G. Does echolocation wavelength prohibit bats’ selection of prey? J. Acoust. Soc. Am. 1051205–1205 (1999).
Google Scholar
Cvikel N., et al. On-board recordings reveal no jamming avoidance in wild bats. Proc. R Soc. B Biol. Sci. 282https://doi.org/10.1098/rspb.2014.2274 (2014).
Gillam, E. H. et al. Bats aloft: variability in echolocation name construction at excessive altitudes. Behav. Ecol. Sociobiol. 6469–79 (2009).
Google Scholar
Ahlén, I., Baagøe, H. J. & Bach, L. Habits of scandinavian bats throughout migration and foraging at Sea. J. Mammal. 901318–1323 (2009).
Google Scholar
Hurme, E. et al. Acoustic analysis of behavioral states predicted from GPS monitoring: a case examine of a marine fishing bat. Mov. Ecol. 71–14 (2019).
Google Scholar
Verboom, B., Boonman, A. M. & Limpens, H. J. G. A. Acoustic notion of panorama components by the pond bat (Myotis dasycneme). J. Zool. 24859–66 (1999).
Google Scholar
Zbinden, Okay. Discipline observations on the pliability of the acoustic behaviour of the European bat Nyctalus noctula (Screber, 1774). Rev. Switzerland Zool. 96335–343 (1989).
Google Scholar
Boonman, A. et al. Echolocating bats can modify sensory acquisition primarily based on inside cues. BMC Biol. 181–10 (2020).
Google Scholar
Hen , I. , Sakov , A. , Kafkafi , N. , Golani , I. & Benjamini , Y. The dynamics of spatial conduct: how can sturdy smoothing strategies assist? J. Neurosci. Strategies 133161–172 (2004).
Google Scholar
Postlethwaite, C. M., Brown, P. & Dennis, T. E. A brand new multi-scale measure for analysing animal motion knowledge. J. Theor. Biol. 317175–185 (2013).
Google Scholar
Mazar H. Radio Spectrum Administration: Insurance policies, Laws and Strategies. (John Wiley & Sons, 2016). https://doi.org/10.1002/9781118759639
Surlykke, A., Filskov, M., Fullard, J. H. & Forrest, E. Auditory relationships to dimension in noctuid moths: Larger is best. pure sciences 86238–241 (1999).
Google Scholar
Attenborough, Okay. et al. Benchmark circumstances for out of doors sound propagation fashions. J. Acoust. Soc. Am. 97173–191 (1995).
Google Scholar
Bass, H. E., Sutherland, L. C., Zuckerwar, A. J., Blackstock, D. T. & Hester, D. M. Atmospheric absorption of sound: Additional developments. J. Acoust. Soc. Am. 97680–683 (1995).
Google Scholar
Pierce A. D. Acoustics: An Introduction to Its Bodily Ideas and Purposes. (Springer, 2019).
Siegel A. F., Wagner M. R. A number of regression: predicting one variable from a number of others. In: Siegel A. F., Wagner M. R., eds. Sensible Enterprise Statistics. Eighth Edi. Tutorial Press; 2022:371-431. https://doi.org/10.1016/B978-0-12-820025-4.00012-9.
Taub M., et al. Information for: What determines the knowledge replace fee in echolocating bats. Mendeley Information, V1. Revealed on-line 2023. https://doi.org/10.17632/w4s2xrkv6p.1.