Sliney, D. H. Laser safety. Lasers Surg. Med. https://doi.org/10.1002/lsm.1900160303 (1995).
Google Scholar
Franks, J. K. What is eye safe? in (ed. Johnson, A. M.) 2–8 (1991). doi:https://doi.org/10.1117/12.43840.
Scholle, K., Lamrini, S., Koopmann, P. & Fuhrberg, P. 2 µm laser sources and their possible applications. In Frontiers in Guided Wave Optics and Optoelectronics (ed. Scholle, K.) (InTech, 2010). https://doi.org/10.5772/39538.
Google Scholar
Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6423–431. https://doi.org/10.1038/nphoton.2012.149 (2012).
Google Scholar
Geng, J., Wang, Q., Lee, Y. & Jiang, S. Development of eye-safe fiber lasers near 2 μm. IEEE J. Sel. Top. Quantum Electron. 20150–160 (2014).
Google Scholar
Hoult, T. Lasers in the 2um SWIR spectral regime and their Applications. in CLEO: 2015 ATu4M.1 (OSA, 2015). doi:https://doi.org/10.1364/CLEO_AT.2015.ATu4M.1.
Geng, J., Wang, Q. & Jiang, S. 2μm fiber laser sources and their applications. in (eds. Taylor, E. W. & Cardimona, D. A.) 816409 (2011). doi:https://doi.org/10.1117/12.896259.
Pierce, M. C., Jackson, S. D., Dickinson, M. R. & King, T. A. Laser-tissue interaction with a high-power 2-?m fiber laser: Preliminary studies with soft tissue. Lasers Surg. Med. 25407–413 (1999).
Google Scholar
Fried, N. M. Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm. Lasers Surg. Med. 3753–58 (2005).
Google Scholar
Písařík, M. et al. Thulium-doped fibre broadband source for spectral region near 2 micrometers. Opto-Electron. Rev. https://doi.org/10.1515/oere-2016-0022 (2016).
Google Scholar
Theisen-Kunde, D., Ott, V., Brinkmann, R. & Keller, R. Potential of a new cw 2μm laser scalpel for laparoscopic surgery. With. Laser Appl. 22139–145 (2007).
Google Scholar
Beyon, J. Y. High-energy 2 μm Doppler lidar for wind measurements. Opt. Eng. 46116201 (2007).
Google Scholar
Henderson, S. W. et al. Coherent laser radar at 2 mu m using solid-state lasers. IEEE Trans. Geosci. Remote Sens. 314–15 (1993).
Google Scholar
Voisiat, B. et al. Material processing with ultra-short pulse lasers working in 2μm wavelength range. in (eds. Roth, S., Nakata, Y., Neuenschwander, B. & Xu, X.) 935014 (2015). doi:https://doi.org/10.1117/12.2078651.
Shi, W., Fang, Q., Zhu, X., Norwood, R. A. & Peyghambarian, N. Fiber lasers and their applications [Invited]. Appl. Opt. 536554 (2014).
Google Scholar
Mingareev, I. et al. Welding of polymers using a 2μm thulium fiber laser. Opt. Laser Technol. 442095–2099 (2012).
Google Scholar
1700 nm ASE light source and its application to mid-infrared spectroscopy | IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/6888126.
Tanabe, S. Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C. R. Chim. 5815–824 (2002).
Google Scholar
Zhang, Q. et al. Infrared emission properties and energy transfer between Tm 3+ and Ho 3+ in lanthanum aluminum germanate glasses. J. Opt. Soc. Am. B https://doi.org/10.1364/JOSAB.27.000975 (2010).
Google Scholar
Li, M. et al. ∼2 µm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass. J.Quant. Spectrosc. Radiat. Transfer 12770–77 (2013).
Google Scholar
Wang, X. et al. Spectroscopic properties of Ho3+ and Al3+ co-doped silica glass for 2-μm laser materials. J. Lumin. 166276–281 (2015).
Google Scholar
Jackson, S. D. The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared. Laser Photon. Rev. 3466–482 (2009).
Google Scholar
Mangini, F. et al. Multiphoton-absorption-excited up-conversion luminescence in optical fiber. Phys. Rev. Appl. 14054063 (2020).
Google Scholar
Ferraro, M. et al. Femtosecond nonlinear losses in multimode optical fibers. Photon. Res. 9(12), 2443–2453 (2021).
Google Scholar
Schuster, K. et al. Material and technology trends in fiber optics. Adv. Opt. Technol. https://doi.org/10.1515/aot-2014-0010 (2014).
Google Scholar
Saha, M., Pal, A. & Sen, R. Vapor phase chelate delivery technique for fabrication of rare earth doped optical fiber. In International Conference on Fibre Optics and Photonics TPo.12 (ed. Saha, M.) (OSA, 2012). https://doi.org/10.1364/PHOTONICS.2012.TPo.12.
Google Scholar
Mat Sharif, K. A., Omar, N. Y. M., Zulkifli, M. I., Muhamad Yassin, S. Z. & Abdul-Rashid, H. A. Fabrication of alumina doped optical fiber preforms by MCVD-metal chelate doping method. Appl. Sci. https://doi.org/10.3390/app10207231 (2020).
Google Scholar
Miluski, P. et al. Eye safe emission in Tm3+/Ho3+ and Yb3+/Tm3+ co-doped optical fibers fabricated using MCVD-CDS system. Opt. Mater. 10110971 (2020).
Google Scholar
Siegman, A. E. High-power laser beams: defining, measuring and optimizing transverse beam quality. In 9th International Symposium on Gas Flow and Chemical Lasers (eds Fotakis, C. et al.) 758–765 (SPIE, 1993). https://doi.org/10.1117/12.144597.
Google Scholar
Paschotta, R. Beam quality deterioration of lasers caused by intracavity beam distortions. Opt. Express 146069 (2006).
Google Scholar
Baggett, J. C., Monro, T. M., Furusawa, K. & Richardson, D. J. Comparative study of large-mode holey and conventional fibers. Opt. Lett. 261045 (2001).
Google Scholar
Jain, D., Jung, Y., Kim, J. & Sahu, J. K. Robust single-mode all-solid multi-trench fiber with large effective mode area. Opt. Lett. 395200 (2014).
Google Scholar
Jain, D., Baskiotis, C. & Kumar Sahu, J. Mode area scaling with multi-trench rod-type fibers. http://apl.aip.org/resource/1/applab/v89/i11/p111119_s1. (2013).
Li, M.-J. et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers. J. Lightwave Technol. 273010–3016 (2009).
Google Scholar
Miluski, P. et al. Large mode area fibers for single-mode transmission near 2μm Proc. SPIE 12142121420M (2022).
Google Scholar
Beier, F. et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Opt. Express 246011 (2016).
Google Scholar
Samson, B., Frith, G., Carter, A. & Tankala, K. High-power large-mode area optical fibers for fiber lasers and amplifiers. OFC/NFOEC 2008 – 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (2008) doi:https://doi.org/10.1109/OFC.2008.4528625.
Peterka, P., Dussardier, B., Blanc, W., Kasik, I. & Honzatko, P. Thulium-doped silica fibers with enhanced 3H4 level lifetime for fiber lasers and amplifiers. In 2012 IEEE 3rd International Conference on Photonics 56–60 (IEEE, 2012). https://doi.org/10.1109/ICP.2012.6379827.
Google Scholar
Kong, F. et al. Large-mode-area fibers operating near singlemode regime. Opt. express 2410295 (2016).
Google Scholar
Kirchhof, J., Unger, S., Schwuchow, A. & Dellith, J. Optical properties of ytterbium/aluminium doped silica glasses. Opt. Mater. Express 10907–925 (2020).
Google Scholar
Noronen, T., Okhotnikov, O. & Gumenyuk, R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700–1800 nm wavelength band. Opt. Express 2414703 (2016).
Google Scholar
Ramírez-Martínez, N. J., Núñez-Velázquez, M. & Sahu, J. K. Study on the dopant concentration ratio in thulium-holmium doped silica fibers for lasing at 21μm. Opt. Express 28(17), 24961–24967 (2020).
Google Scholar
Honzatko, P., Baravets, Y., Kasik, I. & Podrazky, O. Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band. Opt. Lett. 393650 (2014).
Google Scholar